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Abstract

This paper presents a novel method for reformulating non-differentiable collision avoidance constraints into

smooth nonlinear constraints using strong duality of convex optimization. We focus on a controlled object

whose goal is to avoid obstacles while moving in an n-dimensional space. The proposed reformulation does

not introduce approximations, and applies to general obstacles and controlled objects that can be represented

as the union of convex sets. We connect our results with the notion of signed distance, which is widely used in

traditional trajectory generation algorithms. Our method can be applied to generic navigation and trajectory

planning tasks, and the smoothness property allows the use of general-purpose gradient- and Hessian-based

optimization algorithms. Finally, in case a collision cannot be avoided, our framework allows us to find “least-

intrusive” trajectories, measured in terms of penetration. We demonstrate the efficacy of our framework on

a quadcopter navigation and automated parking problem, and our numerical experiments suggest that the

proposed methods enable real-time optimization-based trajectory planning problems in tight environments.

Source code of our implementation is provided at https://github.com/XiaojingGeorgeZhang/OBCA.

Keywords: obstacle avoidance, collision avoidance, path planning, navigation in tight environments,

autonomous parking

1. Introduction

Maneuvering autonomous systems in an environment with obstacles is a challenging problem that arises

in a number of practical applications including robotic manipulators and trajectory planning for autonomous

systems such as self-driving cars and quadcopters. In almost all of those applications, a fundamental feature

is the system’s ability to avoid collision with obstacles which are, for example, humans operating in the same

area, other autonomous systems, or static objects such as walls.

Optimization-based trajectory planning algorithms such as Model Predictive Control (MPC) have re-

ceived significant attention recently, ranging from (unmanned) aircraft to robots to autonomous cars [1, 2, 3,

4, 5, 6, 7, 8, 9, 10, 11, 12]. This can be attributed to the increase in computational resources, the availability
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of robust numerical algorithms for solving optimization problems, as well as MPC’s ability to systematically

encode system dynamics and constraints inside its formulation.

One fundamental challenge in optimization-based trajectory planning is the appropriate formulation of

collision avoidance constraints, which are known to be non-convex and computationally difficult to handle

in general. While a number of formulations have been proposed in the literature for dealing with collision

avoidance constraints, they are typically limited by one of the following features: (i) The collision avoidance

constraints are approximated through linear constraint, and it is difficult to establish the approximation

error [9]; (ii) Existing formulations focus on point-mass controlled objects, and are not applicable to full-

dimensional objects; (iii) When the obstacles are polyhedral, then the collision avoidance constraints are

often reformulated using integer variables [13]. While this reformulation is attractive for linear systems

with convex constraints since in this case a mixed-integer convex optimization problem can be solved,

integer variables should generally be avoided when dealing with nonlinear systems when designing real-time

controllers for robotic systems.

In this paper, we focus on a controlled object that moves in a general n-dimensional space while avoiding

obstacles, and propose a novel approach for modeling obstacle avoidance constraints that overcomes the

aforementioned limitations. Specifically, the contributions of this paper can be summarized as follows:

• We show that if the controlled object and the obstacles are described by convex sets such as polytopes

or ellipsoids (or can be decomposed into a finite union of such convex sets), then the collision avoid-

ance constraints can be exactly and non-conservatively reformulated as a set of smooth non-convex

constraints. This is achieved by appropriately reformulating the distance-function between two convex

sets using strong duality of convex optimization.

• We provide a second formulation for collision avoidance based on the notion of signed distance, which

characterizes not only the distance between two objects but also their penetration. This reformulation

allows us to compute “least-intrusive” trajectories in case collisions cannot be avoided.

• We demonstrate the efficacy of the proposed obstacle avoidance reformulations on a quadcopter tra-

jectory planning problem and autonomous parking application, where the controlled vehicles must

navigate in tight environments. We show that both the distance reformulation and the signed distance

reformulation enable real-time path planning and find trajectories even in challenging circumstances.

Furthermore, since both our formulations allow the incorporation of system dynamics and input constraints,

the generated trajectories are kinodynamically feasible, and hence can be tracked by simple low-level con-

trollers.

This paper is organized as follows: Section 2 introduces the problem setup. Section 3 presents the collision

avoidance and minimum-penetration formulations for the case when the controlled object is a point mass.
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These results are then extended to full-dimensional controlled objects in Section 4. Numerical experiments

demonstrating the efficacy of the proposed method are given in Sections 5 and 6, and conclusions are drawn

in Section 7. The Appendix contains auxiliary results needed to prove the main results of the paper. The

source code of a quadcopter navigation example and autonomous parking example described in Sections 5

and 6 is provided at https://github.com/XiaojingGeorgeZhang/OBCA.

Related Work

A large body of work exists on the topic of obstacle avoidance. In this paper, we do not review, or

compare, optimization-based collision avoidance methods with alternative approaches such as those based

on dynamic programming [14], reachability analysis [15, 16, 17], graph search [18, 19, 20], (random) sampling

[21, 22, 23, 24], or interpolating curves [25]. Indeed, collision avoidance problems are known to be NP-hard

in general [26], and all practical methods constitute some sort of “heuristics”, whose performance depends

on the specific problem and configuration at hand. In the following, we briefly review optimization-based

approaches, and refer the interested reader to [27, 28, 29, 30, 31] for a comprehensive review on existing

trajectory planning and obstacle avoidance algorithms.

The basic idea in optimization-based methods is to express the collision avoidance problem as an optimal

control problem, and then solve it using numerical optimization techniques. One way of dealing with obstacle

avoidance is to use unconstrained optimization, in which case the objective function is augmented with

“artificial potential fields” that represent the obstacles [32, 33, 34, 35, 36]. More recently, methods based on

constrained optimization has attracted attention in the control community, due to its ability to explicitly

formulate collision avoidance through constraints [1, 4, 6, 9]. Broadly speaking, constrained optimization-

based collision-avoidance algorithms can be divided into two cases based on the modeling of the controlled

object: point-mass models and full-dimensional objects. Due to its conceptual simplicity, the vast majority

of literature focuses on collision avoidance for point-mass models, and consider the shape of the controlled

object by inflating the obstacles. The obstacles are generally assumed to be either polytopes or ellipsoids.

For polyhedral obstacles, disjunctive programming can be used to ensure collision avoidance, which is often

reformulated as a mixed-integer optimization problem [1, 4, 13]. In case of ellipsoidal obstacles, the collision

avoidance constraints can be formulated as a smooth non-convex constraint [37, 38], and the resulting

optimization problem can be solved using generic non-linear programming solvers.

The case of full-dimensional controlled objects has, to be best of the authors’ knowledge, not been widely

studied in the context of optimization-based methods, with the exception of [9, 39]. In [39], the authors

model the controlled object through its vertices and, under the assumption that all involved object are

rectangles, ensure collision avoidance by keeping all vertices of the controlled object outside the obstacle. A

more general way of handling collision avoidance for full-dimensional controlled object has been proposed in

[9] using the notion of signed distance, where the authors also propose a sequential linearization technique
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to deal with the non-convexity of the signed distance function.

The approach most closely related to our formulation is probably the work of [6], where the authors pro-

pose a smooth reformulation of the collision avoidance constraint for point-mass controlled objects and poly-

hedral obstacles. However, our approach differs from [6] as (i) our approach generalizes to full-dimensional

controlled objects, and (ii) we are, based on the notion of penetration, also able to compute least-intrusive

trajectories in case collisions cannot be avoided.

Notation

Given a proper cone K ⊂ Rl and two vectors a, b ∈ Rl, then a �K b is equivalent to (b − a) ∈ K. If

K = Rl+ is the standard cone, then �Rl
+

is equivalent to the standard (element-wise) inequality ≤. Moreover,

‖ · ‖∗ is the dual norm of ‖ · ‖, and K∗ ⊂ Rl is the dual cone of K. The “space” occupied by the controlled

object (e.g., a drone, vehicle, or robot in general) is denoted as E ⊂ Rn; similarly, the space occupied by the

obstacles is denoted as O ⊂ Rn.

2. Problem Description

2.1. Dynamics, Objective and Constraints

We assume that the dynamics of the controlled object takes the form

xk+1 = f(xk, uk), (1)

where xk ∈ Rnx is the state of the controlled object at time step k given an initial state x0 = xS , uk ∈ Rnu

is the control input, and f : Rnx × Rnu → Rnx describes the dynamics of the system. In most cases, the

state xk contains information such as the position pk ∈ Rn and angles θk ∈ Rn of the controlled object, as

well the velocities ṗk and angular rates θ̇k. In this paper, we assume that no disturbance is present, and

that the system is subject to input and state constraints of the form

h(xk, uk) ≤ 0, (2)

where h : Rnx × Rnu → Rnh , nh is the number of constraints, and the inequality in (2) is interpreted

element-wise. Our goal is to find a control sequence, over a horizon N , which allows the controlled object to

navigate from the initial state xS to its final state xF ∈ Rnx , while optimizing some objective function J =∑N
k=0 `(xk, uk), where ` : Rnx×Rnu → R is a stage cost, and avoiding M ≥ 1 obstacles O(1),O(2), . . . ,O(M) ⊂

Rn. Throughout this paper, we assume that the functions f(·, ·), h(·, ·) and `(·, ·) are smooth. Smoothness

is assumed for simplicity, although all forthcoming statements apply equally to cases when those functions

are twice continuously differentiable.
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2.2. Obstacle and Controlled Object Modeling

Given the state xk, we denote by E(xk) ⊂ Rn the “space” occupied by the controlled object at time k,

which we assume is a subset of Rn. The collision avoidance constraint at time k is now given by1

E(xk) ∩O(m) = ∅, ∀m = 1, . . . ,M. (3)

Constraint (3) is non-differentiable in general, e.g., when the obstacles are polytopic [6, 9]. In this paper,

we will remodel (3) in such a way that both continuity and differentiability are preserved. To this end,

we assume that the obstacles O(m) are convex compact sets with non-empty relative interior2, and can be

represented as

O(m) = {y ∈ Rn : A(m)y �K b(m)}, (4)

where A(m) ∈ Rl×n, b(m) ∈ Rl, and K ⊂ Rl is a closed convex pointed cone with non-empty interior.

Representation (4) is entirely generic since any compact convex set admits a conic representation of the

form (4) [40, p.15]. In particular, polyhedral obstacles can be represented as (4) by choosing K = Rl+;

in this case �K corresponds to the well-known element-wise inequality ≤. Likewise, ellipsoidal obstacles

can be represented by letting K be the second-order cone, see [41] for details. To simplify the upcoming

exposition, the same cone K is assumed for all obstacles; the extension to obstacle-specific cones K(m) is

straight-forward.

In this paper, we will consider controlled objects E(xk) that are modeled as point-masses as well as

full-dimensional objects. In the former case, E(xk) simply extracts the position pk from the state xk, i.e.,

E(xk) = pk. (5a)

In the latter case, we will model the controlled object E(xk) as the rotation and translation of an “initial”

convex set B ⊂ Rn, i.e.,

E(xk) = R(xk)B + t(xk), B := {y : Gy �K̄ g}, (5b)

where R : Rnx → Rn×n is an (orthogonal) rotation matrix and t : Rnx → Rn is the translation vector. The

matrices (G, g) ∈ Rh×n × Rh and the cone K̄ ⊂ Rh, which we assume is closed, convex and pointed, define

the shape of our initial (compact) set B and are assumed known. Often, the rotation matrix R(·) depends

on the angles θk of the controlled object, while the translation vector t(·) depends on the position pk of the

controlled object. We assume throughout that the functions R(·) and t(·) are smooth.

1In this paper, we only consider collision avoidance constraints that are associated with the position and geometric shape of

the controlled object, which are typically defined by its position pk and angles θk. This is not a restriction of the theory as the

forthcoming approaches can be easily generalized to collision avoidance involving other states, but done to simplify exposition

of the material.
2Non-convex obstacles can often be approximated/decomposed as the union of convex obstacles

5



2.3. Optimal Control Problem with Collision Avoidance

By combining (1)–(3), the constrained finite-horizon optimal control problem with collision avoidance

constraint is given by

min
x,u

N∑
k=0

`(xk, uk)

s.t. x0 = xS , xN+1 = xF ,

xk+1 = f(xk, uk),

h(xk, uk) ≤ 0,

E(xk) ∩O(m) = ∅,


k = 0, . . . , N,

m = 1, . . . ,M,

(6)

where E(xk) is either given by (5a) (point-mass model) or (5b) (full-dimensional set), x := [x0, x1, . . . , xN+1]

is the collection of all states, and u := [u0, u1, . . . , uN ] is the collection of all inputs. A key difficulty in solving

problem (6), even for linear systems with convex objective function and convex state/input constraints, is

the presence of the collision-avoidance constraints E(xk) ∩ O(m) = ∅, which in general are non-convex and

non-differentiable [6, 9]. In the following, we present two novel approaches for modeling collision avoidance

constraints that preserve continuity and differentiability, and are amendable for use with existing off-the-shelf

gradient- and Hessian-based optimization algorithms.

2.4. Collision Avoidance

A popular way of formulating collision avoidance is based on the notion of signed distance [9]

sd(E(x),O) := dist(E(x),O)− pen(E(x),O), (7)

where dist(·, ·) and pen(·, ·) are the distance and penetration function, and are defined as

dist(E(x),O) := min
t
{‖t‖ : (E(x) + t) ∩O 6= ∅}, (8a)

pen(E(x),O) := min
t
{‖t‖ : (E(x) + t) ∩O = ∅}. (8b)

Roughly speaking, the signed distance is positive if E(x) and O do not intersect, and negative if they

overlap. Therefore, collision avoidance can be ensured by requiring sd(E(x),O) > 0. Unfortunately, directly

enforcing sd(E(x),O) > 0 inside the optimization problem (6) is generally difficult since it is non-convex and

non-differentiable in general [9]. Furthermore, for optimization algorithms to be numerically efficient, they

require an explicit representation of the functions they are dealing with, in this case sd(·, ·). This, however,

is difficult to obtain in practice since sd(·, ·) itself is the solution of the optimization problems (8a) and (8b).

As a result, existing algorithms approximate (7) through local linearization [9], for which it is difficult to

establish bounds on approximation errors.

In the following, we propose two reformulation techniques for obstacles avoidance that overcome the

issues of non-differentiability and that do not require an explicit representation of the signed distance. We
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begin with point-mass models in Section 3, and treat the general case of full-dimensional controlled objects

in Section 4.

3. Collision Avoidance for Point-Mass Models

In this section, we first present a smooth reformulation of (6) when E(xk) = pk in Section 3.1, and then

extend the approach in Section 3.2 to generate minimum-penetration trajectories in case collisions cannot

be avoided. To simplify notation, the time indices k are omitted in the remainder of this section.

3.1. Collision-Free Trajectory Generation

Proposition 1. Assume that the obstacle O and the controlled object are given as in (4) and (5a), respec-

tively, and let dmin ≥ 0 be a desired safety margin between the controlled object and the obstacle. Then we

have:

dist(E(x),O) > dmin (9)

⇐⇒ ∃λ �K∗ 0: (Ap− b)>λ > dmin, ‖A>λ‖∗ ≤ 1.

Proof. It follows from (4) and (8a) that dist(E(x),O) = mint{‖t‖ : A(E(x) + t) �K b}. Following [41, p.401],

its dual problem is given by maxλ
{

(AE(x)− b)>λ : ‖A>λ‖∗ ≤ 1, λ �K∗ 0
}

, where ‖ · ‖∗ is the dual norm

associated to ‖·‖ and K∗ is the dual cone of K. Since O is assumed to have non-empty relative interior, strong

duality holds, and dist(E(x),O) = maxλ
{

(AE(x)− b)>λ : ‖A>λ‖∗ ≤ 1, λ �K∗ 0
}

. Hence, for any non-

negative scalar dmin, dist(E(x),O) > dmin is satisfied if, and only if, there exists λ �K∗ 0: (AE(x)− b)>λ >

dmin, ‖A>λ‖∗ ≤ 1. The desired result follows from identity (5a).

Intuitively speaking, any variable λ satisfying the right-hand-side of (9) is a certificate verifying the

condition dist(E(x),O) > dmin. Since E(x) ∩ O = ∅ is equivalent to dist(E(x),O) > 0, the optimal control

problem (6) for the point-mass model (5a) is given by

min
x,u,λ

N∑
k=0

`(xk, uk)

s.t. x0 = xS , xN+1 = xF ,

xk+1 = f(xk, uk), h(xk, uk) ≤ 0,

(A(m) pk − b(m))>λ
(m)
k > 0,

‖A(m)>λ
(m)
k ‖∗ ≤ 1, λ

(m)
k �K∗ 0,

for k = 0, . . . , N, m = 1, . . . ,M,

(10)

where pk is the position of the controlled object at time k, λ
(m)
k is the dual variable associated with obstacle

O(m) at time step k, and the optimization is performed over the states x, the inputs u and the dual variables

7



λ = [λ
(1)
0 , . . . , λ

(m)
0 , λ

(1)
1 , . . . , λ

(m)
N ]. We emphasize that (10) is an exact reformulation of (6) and that the

optimal trajectory x∗ = [x∗0, x
∗
1, . . . , x

∗
N ] obtained by solving (6) is kinodynamically feasible.

Remark 1. Without further assumptions on the norm ‖ · ‖ and the cone K, the last two constraints in (10)

are not guaranteed to be smooth, a property that many general-purpose non-linear optimization algorithms

require3. Fortunately, it turns out that these constraints are smooth for the practically relevant cases of

‖ · ‖ being the Euclidean distance and K either the standard cone or the second-order cone, which allows us

to model polyhedral and ellipsoidal obstacles. In these cases, and under the assumption that the functions

f(·, ·), h(·, ·) and `(·, ·) are smooth, (10) is a smooth nonlinear optimization problem that is amendable to

general-purpose non-linear optimization algorithms such as IPOPT [42]. Without going into details, we

point out that smoothness is retained when ‖ · ‖ = ‖ · ‖p is a general p-norm, with p ∈ (1,∞), and K is the

cartesian product of p-order cones Kp := {(s, z) : ‖z‖p ≤ s}, with p ∈ (1,∞). In this case, the dual norm is

given by ‖ · ‖∗ = ‖ · ‖q and the dual cone is (Kp)∗ = Kq, where q satisfies 1/p+ 1/q = 1, see [41] for details

on dual norms and dual cones.

While reformulation (10) can be used for obstacle avoidance, it is limited to finding collision-free trajec-

tories. Indeed, in case collisions cannot be avoided, the above formulation is not able to find “least-intrusive”

trajectories by softening the constraints. Intuitively speaking, this is because (10) is based on the notion of

distance, and the distance between two overlapping objects (as is in the case of collision), is always zero,

regardless of the penetration. From a practical point of view, this implies that slack variables cannot be

included in the constraints of (9), because the optimal control problem is not able to distinguish between

“severe” and “less severe” colliding trajectories. Furthermore, in practice, it is often desirable to soften

constraints and include slack variables to ensure feasibility of the (non-convex) optimization problem, since

(local) infeasibilities in non-convex optimization problem are known to cause numerical difficulties. In the

following, we show how the above limitations can be overcome by considering the notion of penetration and

softening the collision avoidance constraints.

3.2. Minimum-Penetration Trajectory Generation

In this section, we consider the design of minimum-penetration trajectories for cases when collision cannot

be avoided and the goal is to find a “least-intrusive” trajectory. Following the literature [43, 44], we measure

“intrusion” in terms of penetration as defined in (8b).

Proposition 2. Assume that the obstacle O and controlled object are given as in (4) and (5a), respectively,

3Strictly speaking, these solvers often require the cost function and constraints to be twice continuously differentiable only.

Smoothness is assumed in this paper for the sake of simplicity.
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and let pmax ≥ 0 be a desired maximum penetration of the controlled object and the obstacle. Then we have:

pen(E(x),O) < pmax (11)

⇐⇒ ∃λ �K∗ 0: (b−Ap)>λ < pmax, ‖A>λ‖∗ = 1.

Proof. The proof, along with auxiliary lemmas, is given in the Appendix.

Proposition 2 resembles Proposition 1 with the difference that the convex inequality constraint ‖A>λ‖∗ ≤

1 is replaced with the non-convex equality constraint ‖A>λ‖∗ = 1. In the following, we will see that

Propositions 1 and 2 can be combined to represent the signed distance as defined in (7).

Theorem 1. Assume that the obstacle O and the controlled object are given as in (4) and (5a), respectively.

Then, for any d ∈ R, we have:

sd(E(x),O) > d (12)

⇐⇒ ∃λ �K∗ 0: (Ap− b)>λ > d, ‖A>λ‖∗ = 1.

Proof. By definition, sd(E(x),O) = dist(E(x),O) if E(x) ∩ O = ∅, and sd(E(x),O) = −pen(E(x),O) if

E(x)∩O 6= ∅. Let E(x)∩O 6= ∅, in which case (12) follows directly from (11). If E(x)∩O = ∅, then we have

from (9) that sd(E(x),O) > d is equivalent to ∃λ �K∗ 0: (Ap−b)>λ > d, ‖A>λ‖∗ ≤ 1. Due to homogeneity

with respect to λ, if the previous condition is satisfied, then there always exists a (scaled) dual multiplier

λ′ �K∗ 0 such that (Ap− b)>λ′ > d, ‖A>λ′‖∗ = 1. This concludes the proof.

Reformulation (12) is similar to reformulation (9), with the difference that (12) holds for all d ∈ R,

while (9) only holds for d ≥ 0. The “price” we pay for this generalization is that the convex constraint

‖A>λ‖∗ ≤ 1 is turned into the non-convex equality constraint ‖A>λ‖∗ = 1 which, as we will see later on,

generally results in longer computation times. Nevertheless, Theorem 1 allows us to compute trajectories of

least penetration whenever collision cannot be avoided by solving the following soft-constrained minimum-

penetration problem:

min
x,u,s,λ

N∑
k=0

[
`(xk, uk) + κ ·

M∑
m=1

s
(m)
k

]
s.t. x0 = x(0), xN+1 = xF ,

xk+1 = f(xk, uk), h(xk, uk) ≤ 0,

(A(m) pk − b(m))>λ
(m)
k > −s(m)

k ,

‖A(m)>λ
(m)
k ‖∗ = 1,

s
(m)
k ≥ 0, λ

(m)
k �K∗ 0,

for k = 0, . . . , N, m = 1, . . . ,M,

(13)

where pk is the position of the controlled object at time k, s
(m)
k ∈ R+ is the slack variable associated to the

object O(m) at time step k, and κ ≥ 0 is a weight factor that keeps the slack variable as close to zero as
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possible. Without going into details, we point out that the weight κ should be chosen “big enough” such that

the slack variables only become active when the original problem is infeasible, i.e., when obstacle avoidance

is not possible [45]. Notice that a positive slack variable implies a colliding trajectory, where the penetration

depth is given by s
(m)
k . We close this section by pointing out that if, a priori, it is known that a collision-free

trajectory can be generated, then formulation (10) should be given preference over formulation (13) because

the former has fewer decision variables, and because the constraint ‖A(m)>λ
(m)
k ‖∗ ≤ 1 is convex, which

generally leads to improved solution times. Smoothness of (13) is ensured if ‖ · ‖ is the Euclidean distance,

and K is either the standard cone or the second-order cone, see Remark 1 for details.

4. Collision Avoidance for Full-Dimension Controlled Objects

The previous section provided a framework for computing collision-free and minimum-penetration tra-

jectories for controlled objects that are described by point-mass models. While such models can be used to

generate trajectories for “ball-shaped” controlled objects, done by setting the minimum distance dmin equal

to the radius of the controlled object (see Section 5 for such an example), it can be restrictive in other cases.

For example, modeling a car in a parking lot as a Euclidean ball can be very conservative, and prevent the

car from finding a parking spot. To alleviate this issue, we show in this section how the results of Section 3

can be extended to full-dimensional controlled objects.

4.1. Collision-Free Trajectory Generation

Similar to Section 3, we begin by first reformulating the distance function, which will allow us to generate

collision-free trajectories:

Proposition 3. Assume that the controlled object and the obstacle are given as in (5b) and (4), respectively,

and let dmin ≥ 0 be a desired safety margin. Then we have:

dist(E(x),O) > dmin (14)

⇔ ∃λ �K∗ 0, µ �K̄∗ 0: − g>µ+ (At(x)− b)>λ > dmin, G
>µ+R(x)>A>λ = 0, ‖A>λ‖∗ ≤ 1.

Proof. Recall that dist(E(x),O) = mine,o{‖e−o‖ : Ao �K b, e ∈ E(x)} = mine′,o{‖R(x)e′+t(x)−o‖ : Ao �K
b,Ge′ �K̄ g}, where the last equality follows from (5b). The dual of this minimization problem is given

by maxλ,µ{−g>µ + (At(x) − b)>λ : G>µ + R(x)>A>λ = 0, ‖A>λ‖∗ ≤ 1, λ �K∗ 0, µ �K̄? 0}, see e.g.,

[41, Section 8.2] for the derivation, where ‖ · ‖∗ is the dual norm, and K∗ and K̄? are the dual cones of

K and K̄, respectively. Since O and B are assumed to have non-empty relative interior, strong duality

holds, and dist(E(x),O) > dmin ⇔ maxλ,µ{−g>µ + (At(x) − b)>λ : G>µ + R(x)>A>λ = 0, ‖A>λ‖∗ ≤

1, λ �K∗ 0, µ �K̄? 0} > dmin ⇔ ∃λ �K∗ 0, µ �K̄∗ 0: − g>µ+ (At(x)− b)>λ > dmin, G
>µ+R(x)>A>λ =

0, ‖A>λ‖∗ ≤ 1.
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Compared to Proposition 1, we see that full-dimensional controlled objects require the introduction of

the additional dual variables µ(m), one for each obstacle O(m). By setting dmin = 0, we obtain now the

following reformulation of (6) for full-dimensional objects:

min
x,u,λ,µ

N∑
k=0

`(xk, uk)

s.t. x0 = x(0), xN+1 = xF ,

xk+1 = f(xk, uk), h(xk, uk) ≤ 0,

−g>µ(m)
k + (A(m) t(xk)− b(m))>λ

(m)
k > 0,

G>µ
(m)
k +R(xk)>A(m)>λ

(m)
k = 0,

‖A(m)>λ
(m)
k ‖∗ ≤ 1, λ

(m)
k �K∗ 0, µ

(m)
k �K̄∗ 0,

for k = 0, . . . , N, m = 1, . . . ,M,

(15)

where λ
(m)
k and µ

(m)
k are the dual variables associated with the obstacle O(m) at step k, λ and µ are the

collection of all λ
(m)
k and µ

(m)
k , respectively, and the optimization is performed over (x,u,λ,µ). Notice that

(15) is an exact reformulation of (6). Smoothness of (15) is ensured if ‖ · ‖ is the Euclidean distance, and

K and K̄ are either the standard cone or the second-order cone, see also Remark 1 for details.

Similar to the point-mass case in Section 3.1, the optimal control problem (15) is able to generate

collision-free trajectories, but unable to find “least-intrusive” trajectories in case collision-free trajectories

do not exist. This limitation is addressed next.

4.2. Minimum-Penetration Trajectory Generation

We overcome the above limitation by considering again the notion of penetration. We begin with the

following result:

Proposition 4. Assume that the obstacles and controlled object are given as in (4) and (5b), respectively,

and let pmax ≥ 0 be a maximal penetration depth. Then we have:

pen(E(x),O) < pmax (16)

⇐⇒ ∃λ �K∗ 0, µ �K̄∗ 0: g>µ+ (b−A t(x))>λ < pmax, G
>µ+R(x)>A>λ = 0, ‖A>λ‖∗ = 1.

Proof. It follows from [43] that pen(E(x),O) = pen(0,O−E(x)), where O−E(x) := {o−e : o ∈ O, e ∈ E(x)}

is the Minkowski difference. Furthermore, we have from the proof of Proposition 2 that pen(0,O−E(x)) =

inf{z : ‖z‖∗=1}{maxy∈O−E(x){y>z}}. Using strong duality of convex optimization, we can dualize the inner

maximization problem as maxo∈O,e∈E(x){z>(o− e)} = maxo∈O,e′∈B{z>(o−R(x)e′ − t(x))} = minλ,µ{b>λ+

g>µ − z>t(x) : A>λ = z, G>µ = −R>z : λ �K∗ 0, µ �K̄∗ 0}. Hence, pen(0,O − E(x)) = infz,λ,µ{b>λ +

g>µ − z>t(x) : A>λ = z, G>µ = −R>z, ‖z‖∗ = 1}. Eliminating the z-variable using the first equality

constraint and following the steps of the proof of Proposition 2 gives the desired result.
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The following theorem shows that Propositions 3 and 4 can be combined to represent the signed distance

function.

Theorem 2. Assume that the obstacles and controlled object are given as in (4) and (5b), respectively.

Then, for any d ∈ R, we have:

sd(E(x),O) > d (17)

⇐⇒ ∃λ �K∗ 0, µ �K̄∗ 0: − g>µ+ (At(x)− b)>λ > d, G>µ+R(x)>A>λ = 0, ‖A>λ‖∗ = 1.

Proof. By definition, sd(E(x),O) = dist(E(x),O) if E(x) ∩ O = ∅, and sd(E(x),O) = −pen(E(x),O) if

E(x) ∩ O 6= ∅. Consider now E(x) ∩ O 6= ∅, in which case (17) follows directly from (16). Assume now

that E(x) ∩ O = ∅; then we have from (14) that sd(E(x),O) > d is equivalent to ∃λ �K∗ 0, µ �K̄∗

0: − g>µ + (At(x) − b)>λ > d, G>µ + R(x)>A>λ = 0, ‖A>λ‖∗ ≤ 1. Due to homogeneity with respect

to λ and µ, if the previous condition is satisfied, then there also exists a λ′ �K∗ 0 and µ′ �K̄∗ 0 such that

−g>µ+ (At(x)− b)>λ > d, G>µ+R(x)>A>λ = 0, ‖A>λ‖∗ = 1. This concludes the proof.

Theorem 2 allows us to formulate the following soft-constrained minimum-penetration optimal control

problem

min
x,u,s,λ,µ

N∑
k=0

[
`(xk, uk) + κ ·

M∑
m=1

s
(m)
k

]
s.t. x0 = xS , xN+1 = xF ,

xk+1 = f(xk, uk), h(xk, uk) ≤ 0,

−g>µ(m)
k + (A(m) t(xk)− b(m))>λ

(m)
k > −s(m)

k ,

G>µ
(m)
k +R(xk)>A(m)>λ

(m)
k = 0,

‖A(m)>λ
(m)
k ‖∗ = 1,

s
(m)
k ≥ 0, λ

(m)
k �K∗ 0, µ

(m)
k �K̄∗ 0,

for k = 0, . . . , N, m = 1, . . . ,M.

(18)

where s
(m)
k ∈ R+ is the slack variable associated to obstacle O(m) at time step k, and κ ≥ 0 is a weight factor

that keeps the slack variable as small as possible. Smoothness of (18) is ensured if ‖ · ‖ is the Euclidean

distance, and K and K̄ are either the standard cone or the second-order cone, see Remark 1 for details.

In the following sections, we illustrate our obstacle avoidance formulation on two applications: a quad-

copter path planning problem where the point-mass formulation is used (Section 5), and an automated

parking problem, where the full-dimensional obstacle avoidance problem formulation is used (Section 6).

5. Example 1: Quadcopter Path Planning

In this section, we illustrate reformulations (10) and (13) on a quadcopter navigation problem, where

the quadcopter must find a path from one end of the room to the other end, while avoiding a low-hanging

12



wall and passing through a small window hole, see Fig. 1.

Figure 1: Setup of quadcopter example together with a (locally optimal) point-to-point trajectory. The

start position is behind the blue wall at X = 1, and the end position in front of red wall at X = 9.

The quadcopter needs to fly below the blue wall and pass through a window in the red wall, see https:

//youtu.be/7WLNJhaHcoQ for an animation. The black circles illustrate the safety distance dmin = 0.25 m

which models the shape of the quadcopter.

5.1. Environment and Obstacle Modeling

The size of the room is 10.5 × 10.5 × 5.5 m, and we see from Fig. 1 that the direct path between the

start and end position is blocked by two obstacles. The first obstacle, a low-hanging wall, blocks the entire

upper part of the room, and can only be passed from below. The second obstacle, another wall, blocks the

entire room, but has a small window through which the quadcopter must pass to reach its target position.

We approximate the shape of the quadcopter by a (Euclidean) sphere of radius 0.25 m. In the framework

of (10) and (13), the shape of the quadcopter can be taken into account by requiring a safety distance of

dmin = 0.25 m.

The first wall, which can only be passed from below, is placed at X = 2 m, and the passage below is

0.85 m high. The second wall is placed at X = 7 m, and the window (size 1× 1m) is placed in the middle of

the second wall at a height of Z = 2.5 m. Finally the depth of both walls is 0.5 m. This obstacle formation

can be formally formulated using five axis-aligned rectangles, where the first obstacle is represented by one

such rectangle and the window can be modeled as the union of four rectangles, see Fig. 1. The collision

avoidance constraints with respect to the four outer walls of the room are achieved by appropriately upper-

and lower-bounding the (X,Y, Z)−coordinates of the quadcopter.
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5.2. Quadcopter Model

We consider the standard quadcopter model as used in [46], which is derived by finding the equation of

motion of the center of gravity (CoG) and summarized next. In this model, X,Y, Z denote the position of

the CoG in the world frame, and we use the Z-X-Y Euler angles do describe the rotation of the quadcopter,

where φ is the pitch angle, θ is the roll angle, and ψ is the yaw angle. The rotation matrix that translates

from the world to the body frame, which is defined with respect to the CoG, is hence given by

RWB =


cψcθ − sφsψsθ −cφsψ cψsθ + cφsψsθ

sψcθ + sφcψsθ cφcψ sψsθ − sφcψcθ
−cφsθ sφ cφcθ

 ,
where sφ := sin(φ) and cφ := cos(φ). The accelerations of the CoG can be derived by considering the sum

of the forces produced by the four rotors Fi which point in positive z-direction in the body frame, and the

gravity force which acts on the negative z-direction in the world frame, resulting in the following equation

of motion,

m


Ẍ

Ÿ

Z̈

 =


0

0

−mg

+RWB


0

0∑4
i=1 Fi

 , (19a)

where m is the mass of the quadcopter and Ẍ, Ÿ and Z̈ are the second time derivatives of X, Y and Z,

respectively. The attitude dynamics of the quadcopter is derived in the body rates p, q, and r which are

related to the Euler angles through the following rotation matrix,
φ̇

θ̇

ψ̇

 =


cθ 0 sθ

sθtφ 1 −cθtφ
−sθ/cφ 0 cθ/cφ



p

q

r

 . (19b)

The body rates are given by the following equation of motion, which is driven by the four rotor forces Fi,

as well as the corresponding moments Mi and has the following form,

I


ṗ

q̇

ṙ

 =


L(F2 − F4)

L(F3 − F1)

M1 −M2 +M3 −M4

−

p

q

r

× I

p

q

r

 , (19c)

where I is the inertia matrix which in our case is diagonal and L is the distance from the CoG to the rotor.

The rotor forces and moments depend quadratically on the motor speed ωi, which are the control inputs

and are defined as follows,

Fi = kFω
2
i , Mi = kMω

2
i , (19d)
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where, kF and kM are constants depending on the rotor blades. Hence, the state of the quadcopter is

x = [X,Y, Z, φ, θ, ψ, Ẋ, Ẏ , Ż, p, q, r] and the inputs are the four rotor speeds u = [ω1, ω2, ω3, ω4].

The parameters of the model, as well as the bounds on the inputs, are taken from [47], which corresponds

to a quadcopter which weighs 0.5 kg and has a diameter of half a meter. Bounds on the angles, velocities

and body rates are considered, and the dynamics can be brought into the form (1) using a (forward) Euler

discretization, such that xk+1 = xk + Toptf̃(xk, uk), where Topt is the sampling time, and f̃(·, ·) is the

continuous-time dynamics that can be obtained from (19a)–(19d).

5.3. Cost function

Our control objective is to navigate the quadcopter as fast as possible, while avoiding excessive control

inputs. We combine these competing goals as a weighted sum of the form J = qτF +
∑N−1
k=0 uTkRuk, where

τF is the final time and R = R> � 0, and q ≥ 0 are weighting factors. Motivated by [48], we do not directly

minimize τF ; instead, observing that τF = NTopt, we will treat the discretization time Topt as a decision

variable. This allows the use of the slightly modified cost function

J(u, Topt) = qNTopt +

N−1∑
k=0

uTkRuk (20)

which will be used in the numerical simulations later on.

Treating Topt as an optimization variable has the additional benefit that the duration of the maneuver

does not need to be fixed a priori, allowing us to avoid feasibility issues caused by a too short maneuver

lengths. We point out that having Topt as a decision variable comes at the cost of introducing an additional

decision variable Topt, which renders the dynamics “more non-linear”, which can be seen when looking at

the Euler discretization in the previous section.

5.4. Choice of Initial Guess

Recall that (10) and (13) are non-convex optimization problems, and hence computationally challenging

to solve in general. In practice, one has to content oneself with a locally optimal solution that, for instance,

satisfied the Karush-Kuhn-Tucker (KKT) conditions [42], since most numerical solvers operate locally. Fur-

thermore, it is well-known that the solution quality critically depends on the initial guess (“warm starting

point”) that is provided to the solvers, and that different initial guesses can lead to different (local) optima.

Unfortunately, computing a good initial guess is often difficult and highly problem dependent; ideally, the

initial guess should be obstacle-free and approximately satisfy the system dynamics.

For the quadcopter example, we have observed that the well-known A? algorithm is able to provide good

initial guesses. A? is a graph search algorithm that is able to find obstacle-free paths by gridding the position

space. It is similar to Dijkstra’s algorithm, but uses a so-called heuristic function to perform a “best-first”

search, see [49, 50] for details. In our quadcopter example, we use the A? algorithm to find an obstacle-free

15



path in the position space, which we use to initialize the states that correspond to the quadcopter’s position.

The remaining states are initialized with zero, while inputs are initialized with the steady state input that

keeps the quadcopter in a hoovering position. The dual variables λ
(m)
k are initialized with 0.05, and the

discretization time Topt with 0.25. Fig. 2 depicts the initial guess used to generate the trajectory shown in

Fig. 1. Notice that, due to gridding, the path in Fig. 2 exhibits a zigzag pattern.

Figure 2: A sample warm start trajectory, obtained from the A? algorithm, is shown. Notice that this

trajectory avoids obstacles but does not satisfy the dynamic constraints of the quadcopter, which will be

“corrected” by solving (10) and (13). The black tube is the safety distance dmin which is used to represent

the shape of the quadcopter.

5.5. Simulation Results

To verify the performance and robustness of our approach, we considered 36 path planning scenarios, each

starting and ending in a hovering position. The starting point is always located at (X,Y, Z) = (1, 1, 3) m,

and the finishing point is always located behind the wall with the window at X = 9 m, but with varying Y

and Z coordinates. The final positions are generated by gridding the (Y, Z) space with nine points in the

Y direction and four points in the Z direction as shown in Fig. 3. We tested both the distance formulation

(10) as well as the signed distance formulation (13). The horizon N equals the number of steps performed

by the A? algorithm, and takes values between 100 and 129 for the given setup and a grid size of 0.1 m.

The sampling time Topt is restricted to lie between 0.125 s and 0.375 s. The optimization problems are

implemented with the modeling toolbox JuMP in the programming language Julia [51], and solved using

the general purpose nonlinear solver IPOPT [42]. The problems are solved on a 2013 MacBook Pro with an

i7 processor clocked at 2.6 GHz.
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Table 1 lists the minimum, maximum and average computation time of the A? algorithm, and the time

required to solve problems (10) and (13). Fig. 3 reports the solution time as a function of the finishing

position, where a circle indicates that IPOPT has successfully found a solution. We see from Fig. 3 that

both the distance and signed distance formulation are able to compute all paths successfully. Interestingly,

however, the computation time pattern of these two approaches are not correlated; in other words, a “dif-

ficult” scenario for the distance formulation might be “easy” for the signed distance formulation, and vice

versa. In practice, this implies that to obtain feasible trajectories as fast as possible, the navigation problem

should be solved with both obstacle avoidance formulations, and the first solution should be taken. In our

setup, such an approach would result in a worst case computation time of 28.9 s, as opposed to 48.0 s and

59.1 s if the distance and signed distance reformulation are considered individually.

We close this section by pointing out that, with a maximum computation time of 2.8 s, the time for A?

to find an initial guess is considerably lower than that for solving the optimization problems, see Table 1.

This is not surprising since A? only plans a path in the (X,Y, Z)-space and ignores the system dynamics

which leads to zigzag behavior, see Fig. 2. A dynamically feasible path is only obtained after solving the

optimal control problems (10) and (13) which, by explicitly taking into account system dynamics, smoothen

and locally optimize the path provided by the A? algorithm.
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Figure 3: Solution time for quadcopter trajectory planning with distance formulation (10) (top) and signed-

distance formulation (13) (right).
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Table 1: Computation time of A?, distance formulation (10) and signed distance formulation (13).

Quadcopter navigation min max mean

warm start (A?) 0.5724 s 2.8157 s 1.6207 s

distance formulation (10) 4.6806 s 47.9762 s 14.9716 s

signed distance formulation (13) 4.7638 s 59.1031 s 14.3962 s

6. Example 2: Autonomous Parking

As a second application for our collision avoidance formulation, we consider the autonomous parking

problem for self-driving cars. In contrast to the quadcopter case, modeling a car as a point-mass and

then approximating its shape with a ball can be very conservative and prevent the car from finding a

feasible parking trajectory, especially when the environment is tight. In this section, we model the car as

a rectangle, and then employ the full-dimensional formulation described in Section 4. We show that our

modelling framework allows us to find obstacle-free parking trajectories even in tight environments. Two

scenarios are considered: reverse parking (Fig. 4) and parallel parking (Fig. 5).
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Figure 4: Reverse parking maneuver. The controlled vehicle is shown in green at every time step. Vehicle

starts on the left facing to the right, and ends facing upwards, see https://youtu.be/V7IUPW2qDFc for an

animation.

6.1. Environment and Obstacle Modeling

For the reverse parking scenario, the parking spot is assumed 2.6 m wide and 5.2 m long. The width

of the road, where the car can maneuver in, is 6 m, see Fig. 4 for an illustration. For the parallel parking

scenario, the parking spot is 2.5 m deep and 6 m long, and the space to maneuver is 6 m wide (Fig. 5). Note

that the obstacles in the reverse parking scenario can be described by three axis aligned rectangles, while

the obstacles in the parallel parking scenario can be described by four axis aligned rectangles. In both cases,

18

https://youtu.be/V7IUPW2qDFc


-10 -5 0 5 10

X [m]

0

2

4

6

8

10

12

Y
 [
m

]

Figure 5: Parallel parking maneuver. The controlled vehicle is shown in green at every time step. Vehicle

starts facing to the right, and ends facing to the right, see https://youtu.be/FST7li4M6lU for an animation.

the controlled vehicle is modeled as a rectangle of size 4.7 × 2 m, whose orientation is determined by the

car’s yaw angle.

6.2. System Dynamics and Cost Function

The car is described by the classical kinematic bicycle model, which is well-suited for velocities used in

typical parking scenarios. The states (X,Y ) correspond to the center of the rear axes, while ϕ is the yaw

angle with respect to the X-axis, and v is the velocity with respect to the rear axes. The inputs are the

steering angle δ and the acceleration a. Hence, the continuous-time dynamics of the car is given by

Ẋ = v cos(ϕ) ,

Ẏ = v sin(ϕ) ,

ϕ̇ =
v tan(δ)

L
,

v̇ = a ,

where L = 2.7 m is the wheel base of the car. The steering angle is limited between ±0.6 rad (approximately

34 deg), with rate constraints δ̇ ∈ [−0.6, 0.6] rad/s; acceleration is limited to be between ±1 m/s2. We limit

the car’s velocity to lie between −1 and 2 m/s. Similar as in the quadcopter case, the continuous-time

dynamics are discretized using a forward Euler scheme. Finally, the same cost function as in the quadcopter

is used, i.e., a weighted sum between the discretization-time and control effort is considered.

6.3. Initial Guess

Similar to the previous example, the solution quality of the non-convex optimization problems heavily

depends on the initial guess provided to the numerical solvers. Unfortunately, it turns out that the A?

algorithm used in the quadcopter example generally provides a poor warm start as it is unable to take into
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account the vehicle’s non-holonomic dynamics4. To address this issue, we resort to a modified version of

A?, called Hybrid A? [19]. The main idea behind Hybrid A? is to use a simplified vehicle model with states

(X,Y, ϕ), and a finite number of steering inputs to generate a coarse parking trajectory. Like A?, Hybrid

A? grids the state space and performs a tree search, where the nodes are expanded using the simplified

vehicle model. We refer the interested reader to [19] for details on Hybrid A?. Fig. 6 and Fig. 7 depict two

trajectories obtained from the Hybrid A? algorithm. Notice that, due to discretization of state and input,

the paths generated by Hybrid A? seems more “bang-bang” and less “smooth” than those shown in Fig. 4

and Fig. 3.
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Figure 6: Initial guess provided by Hybrid A? for reverse parking.
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Figure 7: Initial guess provided by Hybrid A? for parallel parking.

6.4. Simulation Results

To evaluate the performance of formulations (15) and (18), we study the reverse and parallel trajectory

planning problem. For both cases, we consider different starting positions but one fixed end position at

4Roughly speaking, A? will return trajectories that would require the vehicle to move sideways. Simulations indicate that

the numerical solvers are typically not able to “correct” such a behavior and unable to recover a feasible solution when initialized

with A?.
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X = 0 m, and investigate the computation time of each method. The starting positions are generated

by gridding the maneuvering space within X ∈ [−10, 10] m and Y ∈ [6.5, 9.5] m, with 21 grid points in

the X direction and 4 grid points in Y direction, see Fig. 8. The orientation for all the starting points

is ϕ = 0, resulting in a total of 84 starting points. The horizon length N is given by the Hybrid A?

algorithm. The optimization problems are again implemented with the modeling toolbox JuMP in the

programming Julia [51], and IPOPT [42] is used as the numerical solver. The problems are solved on a

2013 MacBook Pro with a i7 processor clocked at 2.6 GHz. A Julia-based example code can be found at

https://github.com/XiaojingGeorgeZhang/OBCA.

We begin by considering the reverse parking case, where one specific maneuver is illustrated in Fig. 4.

The computation times for the distance and the signed distance formulation are listed in Table 2 (upper

half) and shown in Fig. 8, for all 84 initial conditions. Table 2 indicates that the distance formulation is

generally faster than the signed-distance formulation, with a mean computation time of 0.60 s compared to

1.03 s. This is not surprising since the signed distance formulation has more decision variables due to the

presence of the slack variables s
(m)
k , see (18). Furthermore, we see from Fig. 8 that both approaches are able

to find feasible parking trajectories, for all 84 considered initial conditions. Interestingly, we see that there

are no obvious relations between starting positions and solution times.
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Figure 8: Solution time for reverse parking with distance formulation (15) (top) and signed-distance formu-

lation (18) (bottom).

The computation times of the parallel parking case is shown in Fig. 9 and Table 2 (lower half). Similar
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as in the reverse parking case, we see that both approaches have a 100% success rate, and that, again due to

the presence of the slack variables, the signed distance formulation requires longer computation time (1.67 s

on average) than the distance formulation (0.87 s on average). Compared to reverse parking we see that

parallel parking is computationally more demanding. We believe that this is due to the fact that the paths

in parallel parking are generally longer than in reverse parking, since the car first needs to drive to the right

before it can back into the parking lot, see also Fig. 5.

Table 2: Computation time of Hybrid A?, distance formulation (15) and signed distance formulation (18).

min max mean

Reverse Parking

warm start (Hybrid A?) 0.0315 s 3.2230 s 0.5491 s

distance formulation (15) 0.2111 s 2.7166 s 0.6046 s

signed distance formulation (18) 0.3200 s 4.4840 s 1.0344 s

Parallel Parking

warm start (Hybrid A?) 0.0421 s 2.4766 s 0.3012 s

distance formulation (15) 0.2561 s 3.9885 s 0.8682 s

signed distance reformulation (18) 0.3850 s 6.7266 s 1.6703 s

We close this section with the following two remarks: First, we point out that, while the paths generated

by the Hybrid A? are collision-free and kinodynamically feasible, they are challenging to track with low-level

path following controllers because they do not incorporate information on the velocity and do not take into

account the rate constraints in both steering and acceleration, allowing the car to take “aggressive” maneu-

veures. As demonstrated in [52], this leads, in general, to significantly longer maneuvering times. Second,

we notice from Table 2 that the computation time of Hybrid A? is comparable to those of (signed) distance.

Furthermore, the maximum overall computation time of Hybrid A? and signed distance reformulation is

7.7 s (reserve parking), and 9.2 s (parallel parking). This implies that, when initialized with Hybrid A?, the

proposed collision avoidance framework enables real-time autonomous parking in tight environments.

7. Conclusion

In this paper, we presented smooth reformulations for collision avoidance constraints for problems where

the controlled object and the obstacle can be represented as the finite union of convex sets. We have

shown that non-differentiable polytopic obstacle constraints can be dealt with via dualization techniques

to preserve differentiability, allowing the use of gradient- and Hessian-based optimization methods. The

presented reformulation techniques are exact and non-conservative, and apply equally to point-mass and
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Figure 9: Solution time for parallel parking with distance formulation (15) (top) and signed-distance for-

mulation (18) (bottom).

full-dimensional controlled vehicles. Furthermore, in case collision-free trajectories cannot be generated, our

framework allows us to find least-intrusive trajectories, measured in terms of penetration.

Our numerical studies, performed on a quadcopter trajectory planning and autonomous car parking

example, indicate that, when appropriately initialized, the proposed framework is robust, real-time feasible,

and able to generate dynamically feasible trajectories. Furthermore, we have seen that the initialization

method is problem-dependent, and should be chosen depending on the system at hand. Current research

focuses on appropriately warm starting the discretization time Topt, as well as on methods for further

speeding up computation times.

Appendix: Proof of Proposition 2

We need the following standard results from convex analysis:

Lemma 1. Let C ⊂ Rn be a compact convex set.

(i) Then, HC(z) := {x ∈ Rn : z>x ≤ maxy∈C y
>z} is a supporting half space with normal vector z, and

C =
⋂

z : ‖z‖=1

HC(z), (21)
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for any norm ‖ · ‖.

(ii) Let ∂HC(z) := {x ∈ Rn : z>x = maxy∈C y
>z} be the supporting hyperplane with normal vector z.

Then, for any x̄ ∈ C, it holds that

dist(x̄, ∂HC(z)) =
maxy∈C{y>z} − z>x̄

‖z‖∗
, (22)

where dist(·, ·) is defined as in (8a).

Proof of Proposition 2

First observe that pen(E(x),O) = dist(E(x),O{), where O{ ⊂ Rn denotes the complement of the set

O. Using this relationship and recalling the definition of dist(·, ·), it follows from (21) that pen(E(x),O) =

inf{z : ‖z‖∗=1} dist(E(x), ∂HO(z)), where we exploited the fact that (21) holds for any norm5, and hence

also the dual norm ‖ · ‖∗. Furthermore, it follows from (22) that, since ‖z‖∗ = 1, dist(E(x), ∂HO(z)) =

maxy∈O{y>z} − z>E(x), which allows us to rewrite the penetration function as

pen(E(x),O) = inf
{z : ‖z‖∗=1}

{max
y∈O
{y>z} − z>E(x)}.

To see that the min-max problem is equivalent to (11), we use strong duality of convex optimization to

reformulate the inner maximization problem as maxy∈O{y>z} = minλ{b>λ : A>λ = z, λ �K∗ 0}. Hence,

pen(E(x),O) = infz,λ{b>λ − z>E(x) : ‖z‖∗ = 1, A>λ = z, λ �K∗ 0} = infλ{(b − AE(x))>λ : ‖A>λ‖∗ =

1, λ �K∗ 0}. Finally, we have pen(E(x),O) < pmax ⇔ infλ{(b − AE(x))>λ : ‖A>λ‖∗ = 1, λ �K∗ 0} <

pmax ⇔ λ �K∗ 0: (b−AE(x))>λ < pmax, which concludes the proof.

References

[1] A. Richards and J. P. How. Aircraft trajectory planning with collision avoidance using mixed integer linear programming.

In American Control Conference, pages 1936–1941, May 2002.

[2] F. Borrelli, T. Keviczky, and G. J. Balas. Collision-free UAV formation flight using decentralized optimization and invariant

sets. In IEEE Conference on Decision and Control, pages 1099–1104 Vol.1, Dec 2004.

[3] M. Diehl, H.G. Bock, H. Diedam, and P.-B. Wieber. Fast Direct Multiple Shooting Algorithms for Optimal Robot Control,

pages 65–93. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[4] L. Blackmore and B. Williams. Optimal manipulator path planning with obstacles using disjunctive programming. In

American Control Conference, June 2006.

[5] Y. Gao, T. Lin, F. Borrelli, E. Tseng, and D. Hrovat. Predictive control of autonomous ground vehicles with obstacle

avoidance on slippery roads. In ASME Dynamic Systems and Control Conference, 2010.

[6] R. Patel and P. J. Goulart. Trajectory generation for aircraft avoidance maneuvers using online optimization. AIAA

Journal of Guidance, Control and Dynamics, 34(1):218–230, 2011.

[7] L. Blackmore, M. Ono, and B. C. Williams. Chance-constrained optimal path planning with obstacles. IEEE Transactions

on Robotics, 27(6):1080–1094, Dec 2011.

5Geometrically speaking, pen(E(x),O) is the minimum distance between E(x) and any supporting hyperplane ∂HO(z) of O.

24



[8] S. Sutrisno, E. Joelianto, A. Budiyono, I. E. Wijayanti, and N. Y. Megawati. Model predictive control for obstacle avoidance

as hybrid systems of small scale helicopter. In International Conference on Instrumentation Control and Automation,

pages 127–132, Aug 2013.

[9] J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg, and P. Abbeel. Motion planning

with sequential convex optimization and convex collision checking. The International Journal of Robotics Research,

33(9):1251–1270, 2014.

[10] A. Liniger, A. Domahidi, and M. Morari. Optimization-based autonomous racing of 1:43 scale RC cars. Optimal Control

Applications and Methods, 36(5):628–647, 2015.

[11] U. Rosolia, A. Carvalho, and F. Borrelli. Autonomous racing using learning model predictive control. In American Control

Conference (ACC), 2017, 2017.

[12] J. Funke, M. Brown, S. M. Erlien, and J. C. Gerdes. Collision avoidance and stabilization for autonomous vehicles in

emergency scenarios. IEEE Transactions on Control Systems Technology, 25(4):1204–1216, July 2017.

[13] I. E. Grossmann. Review of Nonlinear Mixed-Integer and Disjunctive Programming Techniques. Optimization and Engi-

neering, 3(3):227–252, 2002.

[14] G. Schildbach and F. Borrelli. A dynamic programming approach for nonholonomic vehicle maneuvering in tight environ-

ments. In IEEE Intelligent Vehicles Symposium (IV), pages 151–156, June 2016.

[15] C. Tomlin, G. J. Pappas, and S. Sastry. Conflict resolution for air traffic management: a study in multiagent hybrid

systems. IEEE Transactions on Automatic Control, 43(4):509–521, 1998.

[16] K. Margellos and J. Lygeros. Hamilton-Jacobi Formulation for Reach-Avoid Differential Games. IEEE Transactions on

Automatic Control, 56(8):1849–1861, Aug 2011.

[17] K. Margellos and J. Lygeros. Toward 4-D Trajectory Management in Air Traffic Control: A Study Based on Monte Carlo

Simulation and Reachability Analysis. IEEE Transactions on Control Systems Technology, 21(5):1820–1833, Sept 2013.

[18] M. Likhachev and D. Ferguson. Planning long dynamically feasible maneuvers for autonomous vehicles. The International

Journal of Robotics Research, 28(8):933–945, 2009.

[19] D. Dolgov, S. Thrun, M. Montemerlo, and J. Diebel. Path Planning for Autonomous Vehicles in Unknown Semi-structured

Environments. The International Journal of Robotics Research, 29(5):485–501, 2010.

[20] S. Aine, S. Swaminathan, V. Narayanan, V. Hwang, and M. Likhachev. Multi-Heuristic A*. The International Journal

of Robotics Research, 35(1-3):224–243, 2016.

[21] S. M. LaValle and J. J. Kuffner. Randomized Kinodynamic Planning. The International Journal of Robotics Research,

20(5):378–400, 2001.

[22] J. Ziegler and M. Werling. Navigating car-like robots in unstructured environments using an obstacle sensitive cost

function. In IEEE Intelligent Vehicles Symposium, pages 787–791, June 2008.

[23] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion planning. The International Journal of

Robotics Research, 30(7):846–894, 2011.

[24] H. Banzhaf, L. Palmieri, D. Nienhuser, T. Schamm, S. Knopp, and J.M. Zollner. Hybrid curvature steer: A novel extend

function for sampling-based nonholonomic motion planning in tight environments. In IEEE International Conference on

Intelligent Transportation Systems, pages 2239–2246, 2017.

[25] H. Vorobieva, S. Glaser, N. Minoiu-Enache, and S. Mammar. Automatic parallel parking with geometric continuous-

curvature path planning. In IEEE Intelligent Vehicles Symposium Proceedings, pages 465–471, June 2014.

[26] J. Canny. The complexity of robot motion planning. MIT press, 1988.

[27] S. M. LaValle. Planning Algorithms. Cambridge University Press, 2006.

[28] M. Campbell, M. Egerstedt, How J, and R. Murray. Autonomous driving in urban environments: approaches, lessons

and challenges. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering

25



Sciences, 368(1928):4649–4672, 2010.

[29] C. Katrakazas, M. Quddus, W. Chen, and L0 Deka. Real-time motion planning methods for autonomous on-road driving:

State-of-the-art and future research directions. Transportation Research Part C: Emerging Technologies, 60:416 – 442,

2015.
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